The finite element solution of parabolic equations
نویسندگان
چکیده
منابع مشابه
A new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملSolution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملFinite Element Methods for Parabolic Equations
The initial-boundary value problem for a linear parabolic equation with the Dirichlet boundary condition is solved approximately by applying the finite element discretization in the space dimension and three types of finite-difference discretizations in time: the backward, the Crank-Nicolson and the Calahan discretization. New error bounds are derived.
متن کاملa new positive definite semi-discrete mixed finite element solution for parabolic equations
in this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. in the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. error estimates were also obtaine...
متن کاملSolution of Parabolic Equations by Backward Euler-Mixed Finite Element Methods on a Dynamically Changing Mesh
We develop and analyze methods based on combining the lowest-order mixed finite element method with backward Euler time discretization for the solution of diffusion problems on dynamically changing meshes. The methods developed are shown to preserve the optimal rate error estimates that are well known for static meshes. The novel aspect of the scheme is the construction of a linear approximatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 1978
ISSN: 0862-7940,1572-9109
DOI: 10.21136/am.1978.103769